Jake Dytnerski
Ph.D. candidate
Research
Hong Kong has a seasonally dynamic marine environment. Summer sea surface temperatures can exceed 30°C whereas winter temperatures can drop below 15°C. This range in temperature allows for year-round coral communities, and abundant growth of macroalgae in the winter. For my PhD, I am researching the role of the long-spined sea urchin, Diadema setosum, in the ecosystem, here in Hong Kong. Much work has been done on Diadema antillarum in the Caribbean, and some work has been done on the D. setosum as a bioeroder of coral reefs in the tropics. However, little is known about which marcoalgae these urchins feed on; how they affect the seasonal patterns of macroalgae growth and distribution; if the urchins target living corals here in Hong Kong or just the turf algae that grows on the dead skeletons of the corals. Answering these questions will help understand the food sources of the urchins and how their energy stores vary with the seasonal change in food abundance. I am also interested in the connectivity of the populations of D. setosum across its range, as they can be found from the East coast of Africa to French Polynesia, from Honshu, Japan to NSW, Australia. I want to compare the physiological performance of the urchins from stable tropical environments and highly variable environments to determine if they show extensive physiological plasticity, or if populations have adapted to variable environments. This will allow me to predict how these important grazers will cope with future conditions across their range.
Education
2016: Bachelor of Science, Honours Marine Biology, University of British Columbia, Canada
2013: Arts and Science Diploma: Biology, Langara College, Canada
Awards
-
2015: Dean of Science Scholarship – Biology research grant
-
2013: Betty and Tony Pletcher Memorial Scholarship – For Achievement in Biology
-
2012: Real Estate Foundation Biology Student Bursary – Bursary for Biology students
​
Khan Cheung
Ph.D. candidate
Research
Biodiversity loss is one of the most severe challenges faced by the earth system today, with habitat loss being one of its main drivers. Although many countries are committed to the conservation of biodiversity, most of the current conservation efforts relied heavily on alpha taxonomy and focused on the conservation of species diversity and population sizes; the importance of genetic diversity and other evolutionary considerations remain largely underappreciated. My research aims at incorporating evolutionary thinking into oyster reef conservation projects, with the objective of recreating habitats that are both functional and self-sustaining in the long run. I am also interested on studying the effect of oyster on the microbial community composition in marine sediments, with the hope of gaining mechanistic understanding on how oysters, as ecosystem engineers, shape the nutrient flux in coastal habitats.
​